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Figure 2: Joint probability distribution of dice score between estimated kelp mask
(classification and segmentation combined) with kelp mask from test data.
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(a) High accuracy segmentation (Dice = 0.787) (b) Fine ground-trouth masks are challenging (Dice = 0.365)

(c) Segmentation misses kelp completely
(Dice = 0, false-negative)

(d) Models predict kelp incorrectly (false-positive), but ground-truth might be incorrect

Kelp forests are critical formarine ecosystems. They harbor
a diverse range of species and maintain ecological balance,
which necessitates the accurate monitoring of their evolu-
tion. We propose a multi-task ensemble deep learning
framework to predict probabilistic maps of kelp forests
from Landsat 7 satellite imagery. We train parallel image
classification and segmentation models to achieve robust
kelp predictions. Both model types are created as ensem-
bles of 25members producing probabilistic outputs. A com-
parison of the classification and segmentation outputs al-
lows for human sanity checking of themodel predictions.
Our approach yields a high accuracy with amean dice score
of 0.7047 on test data and performed well in the Driven-
Data “KelpWanted” machine learning competition
(#38/671, 3.88% below winning solution).

Abstract

Figure 1: Sample of (a) Landsat 7 satellite imagery and (b) derived remote sensing indices used to predict (c) binary kelp mask.
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Figure 3: Characteristic example predictions from classification and segmentation model. Scores in panel titles are the scores of the combined prediction against test data.KelpNet performs well on a large part of the test data (~850
samples). In most cases, KelpNet correctly predicts the pres-
ence of kelp (cf. Fig 3a+b) with increasing accuracy when
more kelp is contained in the image, typically due to larger
patches. Also, 86%of imagesnot containingkelp are correctly
labeled as such (true-negative) with only 14% false-positive
kelp predictions. Manual investigation of some false-positive
cases indicates that kelp might indeed be present but is not
correctly labeled (cf. Fig 3d). For ~10% of test cases, KelpNet
misses the existing kelp fully. Interestingly, the classification
model often identifies the correct area of interest while the
segmentationmodelmisses it (cf. Fig 3c).

• Normalize channels based on sea data only
• Increase interpretability,
e.g., by assessing channel importance

• Use coarse mask already during training of fine seg-
mentation model

• Expandmulti-task learning, e.g., by adding regression
head to predict auxiliary information, such as kelp fraction
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A high complexity semantic segmentation model
(DeepLab V3, ~39.6M parameters) predicts binary maps of
kelp occurrence from satellite imagery inputs. The kelp

segmentation maps are post-processed by applying coarse
kelp maps obtained from a lower complexity image classi-
fication model (CNN, ~2.75M parameters). Both model

types are trained as ensembles where each member only
utilizes 3 randomly selected feature channels out of the 12
available ones to produce probabilistic kelp maps.

(a) Example of Landsat 7 multi-spectral satellite imagery (normalized)

(b) Remote sensing indices computed from spectral bands (normalized)
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(c) Binary kelp mask and drone image
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